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An experimental study of a turbulent boundary layer at Rθ ≈ 1070 and Rτ ≈ 543 was
conducted. Detailed measurements of the velocity vector and the velocity gradient
tensor within the near-wall region were performed at various distances from the
wall, ranging from approximately y+ = 14 to y+ = 89. The measured mean statistical
properties of the fluctuating velocity and vorticity components agree well with previous
experimental and numerically simulated data. These boundary layer measurements
were used in a joint probability density analysis of the various component vorticity
and vorticity–velocity gradient products that appear in the instantaneous vorticity
and enstrophy transport equations. The vorticity filaments that contribute most to
the vorticity covariance ΩxΩy in this region were found to be oriented downstream
with angles of inclination to the wall, when projected on the streamwise (x, y)-plane,
that decrease with distance moving from the buffer to the logarithmic layer. When
projected on the planview (x, z)- and cross-stream (y, z)-planes, the vorticity filaments
that most contribute to the vorticity covariances ΩxΩz and ΩyΩz have angles of
inclination to the z-ordinate axis that increase with distance from it. All the elements
of the ΩiΩj∂Ui/∂xj term in the enstrophy transport equation, i.e. the term that
describes the rate of increase or decrease of the enstrophy by vorticity filament
stretching or compression by the strain-rate field, have been examined. On balance,
the average stretching of the vorticity filaments is greater than compression at all
y+ locations examined here. However, some individual velocity gradient components
compress the vorticity filaments, on average, more than they stretch them.

1. Introduction
Although a vast amount of information about the properties of the turbulent

boundary layer and insight into its structure has been obtained during many decades
of research, it only has been within the last decade that accurate knowledge of the
vorticity field of this technically important flow has been obtained. This advance in
our knowledge is a result of the development of adequate means to measure one or
more components of the vorticity vector in turbulent flows (see Foss & Wallace 1989
and Wallace & Foss 1995) as well as the development of direct numerical simulations
(DNS) of turbulent flows, both with sufficient resolution to account for most of
the turbulent scales. The data bases resulting from these developments have made
possible the examination of the terms in the transport equations for instantaneous
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where the terms represent the (I) rate of change in the Ωi component of vorticity or
of enstrophy at an Eulerian location in the flow due to: (II) advection, (III) stretch-
ing/compression by reorientation, (IV) viscous diffusion and (V) viscous dissipation
(summation over repeating indices is implied here and elsewhere).

Tennekes & Lumley (1989) have derived and interpreted the terms of transport
equations for mean, 1

2
ΩiΩi, and turbulent, 1

2
ωiωi, enstrophy which are vorticity field

analogues of the velocity field transport equations for mean and turbulent kinetic
energy. Balint, Wallace & Vukoslavc̆ević (1990, 1991) have shown how the terms
in the mean and turbulent enstrophy equations relate to the terms in the equation
for total enstrophy, which is the average of equation (1.2). They also measured the
terms in all three of these equations and showed that viscous diffusion and dissi-
pation of total enstrophy are the dominant processes in the buffer layer and lower
part of the logarithmic layer, but that enstrophy production by stretching almost
balances dissipation farther out in the logarithmic layer. Values of most of the
measured terms of the turbulent enstrophy equation from the experiment of Balint
et al. (1990) have been recently compared by Gorski, Wallace & Bernard (1994)
to values obtained from a DNS of turbulent channel flow at Rτ(≡ uτh/ν) = 145
of Handler, Hendricks & Leighton. (1989). Here h is the channel half-width, the
friction velocity uτ ≡ [τw/ρ]1/2, ρ is the fluid density, the shear stress at the wall
τw ≡ µ∂U/∂ywall , and µ and ν are the fluid molecular and kinematic viscosities,
respectively. Good agreement was found, leading Gorski et al. (1994) to conclude
that these properties have common values for different types of bounded flows
over at least a modest range of Reynolds numbers. They discussed the impli-
cations of this for two-equation modelling where the enstrophy transport equa-
tion can serve as a surrogate for the dissipation rate transport equation. Walker,
Leighton & Garza-Rios (1996) have determined the turbulent enstrophy budget
for a DNS of an open channel flow near its free surface, and Balint, Wallace &
Vukoslavčević (1989) have measured the turbulent enstrophy budget terms for a
two-stream mixing layer.

However, it seems that the physics of the transport processes represented mathe-
matically by the vector and scalar terms in the transport equations (1.1) and (1.2) for
instantaneous vorticity and enstrophy have not been systematically examined. Of par-
ticular interest are terms (III) in these two equations, because they represent, respec-
tively, the rate of change in the vorticity components due to stretching/compression
arising from reorientation of the vorticity filaments by the strain-rate field, and the
concomitant rate of change of the contribution to the local enstrophy from each
vorticity component. This paper aims to unravel the transport physics represented
by terms (III). This will be accomplished by examining the joint probability density
functions (JPDFs), P (Ωj, ∂Ui/∂xj) and P (Ωi, Ωj∂Ui/∂xj). In addition, some insight
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Figure 1. Wind tunnel at Ecole Centrale de Lyon. Dimensions in m.

into the structure of the vorticity field of the turbulent boundary layer and how it
gives rise to the vorticity component covariances will be obtained by determining the
JPDFs of the vorticity components, P (Ωi, Ωj).

The experimental facility and instrumentation are described briefly in § 2, including
the multi-sensor hot-wire probe used to simultaneously measure the velocity and
vorticity vectors. In § 3 the distributions of some statistical properties of the velocity
and vorticity components of this boundary layer are compared to values from earlier
experiments and to values obtained from DNS in order to assess the quality of the
present data. The JPDF analysis and interpretation is presented in § 4, and conclusions
are drawn in § 5.

2. Experimental facility and instrumentation
The experiment was performed in the low-speed boundary layer wind tunnel, shown

in the sketch in figure 1, at the Laboratoire de Mécanique des Fluides, Ecole Centrale
de Lyon, France. A flat plate with a sharp leading edge is mounted at the horizontal
mid-plane of the test section. To stabilize the laminar–turbulent transition of the
boundary layer, a sandpaper trip was attached at 2.8 cm from the leading edge of
the plate. Further control of the leading-edge stagnation point on the flat plate can
be effected by a trailing-edge flap. Smoke, for flow visualization and study of shear
flow dispersion, could be injected through slits in the wall and into the free stream.
Some of these aspects of the experiment are described in Piomelli et al. (1993). The
free-stream velocity, held constant at 1.8 m s−1, was continuously monitored by a
pitot-static tube/electronic manometer system, and the free-stream temperature was
monitored with a thermocouple. The measurements were made at a downstream
position of 3.6 m from the leading edge of the plate where the Reynolds number,
based on momentum thickness, θ, was Rθ ≈ 1070 and was Reτ ≈ 543 based on the
friction velocity and boundary layer thickness. At this location, the boundary layer
thickness, δ, was approximately 9.9 cm, and the friction velocity, determined by a
Clauser fit to the Coles’ (1962) expression (U+ = 2.44 ln y+ + 5.0) for measured data
in the logarithmic region, was uτ = 0.089 m s−1. Here U+ ≡ U/uτ, y

+ ≡ yuτ/ν, the
overbar denotes time-averaged values, and y is the distance from and normal to the
wall.
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The nine-sensor hot-wire probe used in this investigation was operated in the
constant-temperature mode with a 10 channel A.A. Lab Systems hot-wire anemometer
system that has a frequency response that is flat up to about 4000 Hz for the
flow conditions studied. The overheat ratio of the sensors was set at 1.2, which
Vukoslavc̆ević, Wallace & Balint (1991) have found gives adequate sensitivity while
minimizing thermal cross-talk between neighbouring sensors. The voltage signals
were digitized using the OPTIM Megadac 5017A data acquisition system that has
a 250 kHz total throughput 12-bit A/D converter from three 8-channel sample and
hold input cards. The acquisition system was interfaced with and controlled by a
personal computer that was also used to transfer the data to a SUN host computer
for post-processing and for permanent storage on tape. A sampling frequency of
1000 Hz was chosen so that, for positions close to the wall, the streamwise gradients,
obtained by Taylor’s hypothesis, would have a spatial resolution comparable to the
cross-stream gradients, obtained by finite differencing, and that the Nyquist frequency
of 500 Hz was above the highest frequencies with any significant energy in the velocity
field. To ensure convergence of higher-order turbulence statistics, data were acquired
continuously at each measurement location for 3 min. The nine-sensor hot-wire probe
was calibrated before and after the measurements at each location in the boundary
layer.

2.1. The nine-sensor vorticity probe

The design and performance of the nine-sensor probe for simultaneous measurement
of velocity and vorticity vectors has been described in detail by Vukoslavc̆ević et
al. (1991). The probe consists of three arrays, each with three hot-wire sensors. Each
sensor is inclined at approximately 45◦ to the mean flow direction, as shown in the
sketch in figure 2, where the dimensions of the probe used in the present study
are indicated. Tungsten sensor wires with a diameter of 2.5 µm are welded to the
nickel plated tungsten prongs. The nominal length of each sensor is approximately
0.7 mm, giving a length to diameter ratio of 280. The data reduction method used and
briefly summarized in Appendix A was developed by Marasli (see Marasli, Nguyen
& Wallace 1993 for additional details) for multi-sensor probes of arbitrary number
and orientation of the sensors.

The nine-sensor probe has a limited operational angle of attack cone, as has
been discussed in detail by Vukoslavčević et al. (1991). When the instantaneous flow
angle exceeds this cone angle (for this probe > 20◦), the response equations may
either fail to converge or converge to non-physical erroneous values. In view of this
limitation, and since the probe’s calibration was only performed for pitch and yaw
angles between 20◦ and −20◦, the data reduction program rejected solutions outside
these calibration angles, thereby eliminating uncertainties due to extrapolation. Other
experimental uncertainties, such as electronic noise on any of the sensor voltages,
can have a significant effect on the nonlinear response equations and may also result
in non-convergence of the solution scheme. In addition, Newton’s solution method
can fail when the initial guess of the solution is poor. In spite of these difficulties,
the nine-sensor probe and the data reduction technique performed quite well in the
present study, even for the closest measurements to the wall. The data loss is no
more than 8% at y+ = 20; this decreases to 0.5% at y+ = 35. The effect of these
data losses was determined to be negligible on both the statistical properties as well
as the JPDFs. This was demonstrated by removing an additional 4% of the data at
y+ = 20 immediately before and after existing data loss segments, and observing that
the results remain essentially unchanged.
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Figure 4. Effects of the scaling friction velocity on r.m.s. values; ◦, present data at Rτ = 543 scaled
with uτ, • and with an estimate of u∗; ×, Balint et al. (1991) at Reτ = 1134; , Kastrinakis &
Eckelmann (1983) at Reτ = 545; , Kim et al. (1987) at Reτ = 180; , Klewicki (1989) at
Reτ = 969; , Spalart (1988) at Reτ = 660; , Wei & Willmarth (1989) at Reτ = 329;
and , Wei & Willmarth (1989) at Reτ = 3125.

3. Statistical properties
In order to validate the quality of these data, a comparison of some statistical

properties of the boundary layer to previously published experimental and direct
numerical simulation (DNS) results at similar low Reynolds numbers will be made.

3.1. Mean velocity

The mean velocity profile is plotted in figure 3(a). The measurements in the buffer
layer compare well with Spalding’s (1961) empirical fit of a compilation of data
from the literature and in the logarithmic layer with the Coles’ (1962) empirical
fit. The directly measured mean velocity gradient values, (∂U/∂y)+ ≡ (ν/u2

τ)∂U/∂y,
are compared with the derivative of Spalding’s fit (dotted line) in figure 3(b). The
agreement is excellent.

3.2. Moments of the velocity and vorticity components

Most of the published data from the turbulent boundary layer wall region are scaled
with uτ and ν. The required friction velocity, uτ, is usually approximated by the
Clauser method, as described in § 2, or is determined from the direct measurements
of the slope of the velocity profile in the linear sublayer (y+ 6 7). This latter
method only can be achieved experimentally with hot wires by using very small
single-sensor probes for low Reynolds number flows. The use of hot-wire probes
near solid boundaries is complicated by free convection effects and heat losses from
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the sensor to the wall. The probe used in this experiment, with a sensing diameter
of approximately 5.6 Kolmogorov length scales, η, did not have sufficient spatial
resolution for such a direct determination of the friction velocity. While numerical
simulations (Spalart 1988; Kim, Moin & Moser 1987) used numerical grids with
fine enough spatial resolutions near the wall to obtain a good direct estimate of the
velocity gradient in the sublayer, experiments such as the present one and that of
Balint et al. (1991) have relied on approximate values of uτ from the Clauser method
to scale the data.

Blackwelder & Haritonidis (1983) have shown that, over a Reynolds number range
of Rθ = 1000–10 000, friction velocity values estimated from the Clauser fit of the
velocity profile in the logarithmic layer (2.44 ln y+ + 5.0) are larger than those, which
they denoted by u∗, obtained directly from the slope of the velocity profile in the
linear viscous sublayer, with a ratio of the former to the latter varying between 1.08
and 1.20. Similarly, Kline et al. (1967) found the ratio uτ/u∗ to vary between about
1.08 and 1.13 for Rθ = 545–2060, when uτ was obtained from a fit to the logarithmic
velocity profile, 2.44 ln y+ + 4.9. Spalart (1988) also observed this effect for his lowest
Reynolds number turbulent boundary layer DNS. This difference obviously affects
the scaling of the fluctuating velocity and vorticity component r.m.s. values. The
vorticity values are particularly affected because they are scaled with u2

τ . A value of
u∗/U∞ = 0.043 for Reτ = 1000 can be taken from the tabulation of Blackwelder &
Haritonidis (1983). When compared to the Clauser fit value of uτ/U∞ = 0.49 for the
present experiment, a ratio of uτ/u∗ = 1.14 is obtained. This agrees fairly well with
the values of this ratio found by Blackwelder & Haritonidis (1983) and by Kline
et al. (1967) at similar values of Rθ . Thus it seems reasonable to use a value of
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u∗, estimated by taking Blackwelder & Haritonidis’ (1983) value of u∗/U∞, in order
to observe the range of uncertainty, due to the difference between uτ and u∗, when
comparing the normalized data to DNS results.

The r.m.s. (denoted by ′) distributions of the fluctuating velocity components are
shown in figure 4, with open circles representing the present measurements scaled with
uτ, and the filled circles representing the same data scaled with u∗. The values of y+ for
these two non-dimensionalizations of the data are, of course, also determined using uτ
and u∗, respectively. Also compared in this figure are the measurements of Balint et
al. (1991), Klewicki (1989), Wei & Willmarth (1989), Kastrinakis & Eckelmann (1983)
and the DNS values of Kim et al. (1987) and Spalart (1988). It is evident that, when
the present r.m.s. values are scaled with u∗, they compare very well with the results
of Spalart (1988) at a similar Rτ except that, between 15 < y+ < 30, u′/u∗ from our
experiment is somewhat larger. The results of Kim et al. 1987 have lower magnitudes,
reflecting the lower Reynolds number of their simulation.

The skewness factor distributions of the velocity components are plotted in figure 5.
These distributions and those for the flatness factor, of course, are not affected by
the choice of friction velocity for scaling. The skewness factors of the fluctuating
streamwise velocity component, S(u), are negative at measurement locations of this
study and compare very well to the results of Kim et al. (1987) and Kastrinakis
& Eckelmann (1983). The skewness factor distribution of the wall normal velocity
component, S(v), tends to be slightly negative between 20 6 y+ 6 40, beyond which
it becomes positive. This is consistent with the results of Balint et al. (1991) and
Kim et al. (1987). The skewness factor of the spanwise velocity fluctuations, S(w),



Joint probability analysis of a turbulent boundary layer 299

0.1

0 10080604020
y+

0.2

0.3

öz′ ν
u2

τ

0.1

0

0.2

0.3

0.1

0

0.2

0.3

öx′ ν
u2

τ

öy′ ν
u2

τ

öz′ ν
u2

*

öx′ ν
u2

*

öy′ ν
u2

*

Figure 7. Effects of the scaling friction velocity on the vorticity r.m.s. Symbols as figure 4 except
there are no data from Wei & Willmarth (1989).

is very nearly zero as is required by symmetry for this boundary layer, which is
two-dimensional in the mean.

The flatness factor distributions of the velocity fluctuations are shown in figure 6.
The horizontal solid line in the plot indicates the flatness factor value of 3.0 for a
Gaussian random variable. These measured flatness factor values for all three velocity
components compare very well with the results of others, most particularly with the
DNS of Kim et al. (1987).

The r.m.s. distribution of the fluctuating vorticity components is shown in figure 7.
When our ω′x values are scaled with u2

∗, they fall between the values of Spalart (1988)
and those of Kim et al. (1987). Our measurements of ω′y/u

2
∗ and ω′z/u

2
∗ are somewhat

higher than those of Kim et al. (1987) and of Spalart (1988). As noted above,
obviously the uncertainty in experimentally determining the friction velocity, because
it is squared, has a strong affect on these vorticity component r.m.s. comparisons.
The skewness and flatness factors for the fluctuating vorticity components are shown
in figures 8 and 9, respectively. Our results for these higher-order moments are
reasonably consistent with the results of other investigators. In particular, the values
of S(ωx) and S(ωy) are nearly zero, as required by the symmetry of the flow.

Viewed as a whole, the comparisons in this section indicate that the velocity and
vorticity component values measured in this experiment are of reasonably good
accuracy, and thus they can be relied upon for the joint probability density function
analysis to follow below.
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4. Joint probability density function analysis
Quadrant analysis of the Reynolds shear stress covariance, uv, developed inde-

pendently by Wallace, Eckelmann & Brodkey (1972) and Willmarth & Lu (1972),
resulted in a greater understanding of the physical processes underlying turbulent
momentum transport. An extension of quadrant analysis was carried out by Wallace
& Brodkey (1977), who made a detailed analysis of the Reynolds shear stress in a
turbulent channel flow by determining its joint probability density function (JPDF),
P (u, v), where

uv =

∫∫ ∞
−∞
uvP (u, v)dudv. (4.1)

This integral of the covariance integrand, uvP (u, v), over a differential area dudv of the
(u, v)-plane, represents the contribution of that particular simultaneous combination
of sign and magnitude of u and v to the Reynolds shear stress covariance, uv.
By plotting contours of the P (u, v) JPDFs as well as of the covariance integrands,
uvP (u, v), Wallace & Brodkey (1977) showed that sweep, or quadrant 4 (Q4: +u,−v)
events, are the dominant contributors to the Reynolds shear stress very near the
wall for y+ < 15. Farther from the wall, ejections, or quadrant 2 (Q2: −u,+v) events,
become the major contributors. Plots of P (u, v) and uvP (u, v) for the present boundary
layer experiment are shown in figure (10) for y+ = 20, 35 and 89, where u and v are
made non-dimensional by uτ. The shapes of these plots and the location of their
maxima compare well to those of Wallace & Brodkey (1977) for similar y+ locations
in their channel flow. The covariance integrand contour plots show the dominant
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contributions of quadrants Q2 and Q4 to the uv covariance. This type of JPDF and
covariance integrand analysis will be applied below to covariances of various terms
which describe aspects of the structure and dynamics of the vorticity field. All the
JPDF and covariance integrand figures in this investigation have been plotted using
matrices of 100 × 100 bins.

4.1. Vorticity–vorticity covariances

The transport equation for the mean fluctuating enstrophy, ζ ≡ 1
2
ωiωi, has been used

to good effect in two-equation modelling by Robinson, Harris & Hassan (1995) and by
Gorski & Bernard (1996) as a surrogate for the dissipation rate, ε, transport equation.
The ε-equation is notoriously difficult to model near walls in bounded flows, and
it is often modelled like the turbulent kinetic energy, resulting in unphysical model
behaviour. The fluctuating vorticity component covariance, ωxωy , when coupled with

the mean velocity gradient, ∂U/∂y, forms one of the largest production terms in the
ζ-equation (see Gorski et al. 1994). Here the total vorticity covariances, ΩiΩj , are
studied to obtain a physical picture of the spatial orientation of the vorticity filaments
that contribute most to them.

Indications of the orientations of projections of vorticity filaments on the (x, y)-
plane of the boundary layer are given by the P (Ωx, Ωy) JPDF contours seen in
figure 11(a), where Ωx and Ωy are made non-dimensional by ν/u2

τ . Here, and in
other figures, vorticity and velocity gradient components are non-dimensionalized by
this viscous time scale. The shapes of the contours indicate that the more probable
orientation of vorticity filaments is one of inclination downstream, at an angle to
the wall that may vary along the filament. These filaments may be configured as
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single elements with either sense of rotation, as illustrated by the solid arrows in
figure 12, or in counter-rotating pairs, as illustrated by the shaded arrow loop that
indicates one possible configuration for such counter-rotating pairs: a hairpin shape.
There are several other possible configurations of these counter-rotating pairs, but the
single-point vorticity component data of this experiment do not permit distinguishing
between the variety of these possibilities, nor do they permit the determination of how
these vorticity filaments are clustered in space. However, they do provide information
about the probability of occurrence of angles of inclination of the projections of the
vorticity filaments on the three coordinate planes.

Analagous to the Reynolds shear stress covariance, uv, for the velocity vector
fluctuations, the covariance ΩxΩy is the correlation of the streamwise and wall
normal components of the vorticity vector. The JPDFs in figure 11(a) clearly indicate
a preference for like-sign Ωx and Ωy to occur at the same time. This results in a

positive covariance, ΩxΩy , with values of the correlation coefficient of 0.30, 0.31 and
0.22 for the three y+ (20, 35 and 89, respectively) positions shown.

The ΩxΩyP (Ωx, Ωy) covariance integrand plots of figure 11(b) show even more
clearly that the covariance is positive because of the dominance of the contributions
from quadrants Q1 (+Ωx,+Ωy) and Q3 (−Ωx,−Ωy). The orientation of segments
of vorticity filaments with projections on the (x, y)-plane making angles with the
positive x-axis of θ ≡ tan−1(Ωy/Ωx) can be inferred from the peaks in these co-
variance integrand Q1 and Q3 quadrants. These vorticity filament segments, with
angles of inclination θ of about 58◦ , 48◦ and 48◦ (for Q1) and −118◦, −136◦ and
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−137◦ (for Q3), make the greatest contribution to the ΩxΩy covariance at y+ =
20, 35 and 89, respectively. Thus these vorticity filaments, dominant in this limited
sense, are inclined at decreasing angles to the streamwise direction with increas-
ing distance from the wall moving from the buffer to the logarithmic layer. These
angles of inclination depend somewhat on the matrix size, which is limited by
the sample size, used for the JPDFs and covariance integrands, and the accuracy
with which they have been determined is not great. The worst possible angle er-
ror for this matrix bin size is about ±5◦. However, the trends with wall distance
can be discerned and are independent of the number of bins used in the JPDF
and covariance integrand matrices. This decreasing angle of inclination is quali-
tatively consistent with observations of Bernard, Thomas & Handler (1993) who
plotted the projections on the (x, y)-plane of the vorticity vectors at the centre of
the set of quasi-streamwise vorticies that they identified in a Rτ = 125 channel flow
DNS.

It is apparent from the somewhat triangular shaped P (Ωx, Ωz) JPDFs at y+ = 20
and 35 in figure 13 that, in the buffer layer and lower part of the logarithmic layer,
the vorticity filaments usually do not have much streamwise orientation when the
spanwise vorticity, Ωz , is large and negative (i.e. of the same sign as the mean shear).
Conversely, the largest values of Ωx occur when Ωz is nearly zero. At y+ = 20 the
largest contribution to the covariance ΩxΩz (the peaks in the covariance integrand
contours) come from segments of vorticity filaments with projections on the (x, z)-
plane forming angles γ ≡ tan−1(Ωx/Ωz) of about ±16◦ with the negative spanwise



304 L. Ong and J. M. Wallace

–¿x
–¿y

–¿z

+¿x

+¿y

–¿z

Vorticity filament

Flow
 dire

cti
on

y

z

x
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z-axis. This indicates that these vorticity filaments are oriented primarily in the
negative spanwise direction in the buffer layer. However, at y+ = 35 this angle
increases to about ±27◦, indicating that the vorticity filaments rotate toward the
streamwise direction with increasing distance from the wall. At y+ = 89 this angle
increases further to about ±42◦.

The largest contribution to the covariance ΩyΩz at y+ = 20, as inferred from
figure 14, comes from vorticity filament segments with projections on the (y, z)-
plane forming angles φ ≡ tan−1(Ωy/Ωz) of about ±27◦ with the negative spanwise
z-axis. This indicates that, at this location, these filaments that contribute most to
the covariance already have significantly rotated from the negative spanwise to the
normal direction. At y+ = 35 and 89 this angle increases to about ±35◦ and ±37◦,
respectively.

These patterns of orientation of the vorticity filaments in the (x, z)- and (y, z)-planes
are also qualitatively consistent with the observations of Bernard et al. (1993). They
note that, although they can identify obvious quasi-streamwise vortices in the (y, z)-
planes of their DNS, close to the wall the vorticity vectors at the centres of these
vortices often have larger Ωy and Ωz components than Ωx. Brooke & Hanratty (1993)
and Miyake & Tsujimoto (1996) have found that projections of the vorticity filament
lines on the cross-stream (y, z) plane passing through the cores of detected quasi-
streamwise vortices are almost vertical in their respective simulations of turbulent
channel flows.

Sketches of the projections of these vorticity filaments making the largest contri-
bution to the covariances ΩxΩy , ΩxΩz and ΩyΩz are shown in figure 15. Note that
these three views are not the projections of segments of a single manifestation of a
three-dimensional filament. Such information cannot be obtained from JPDFs of two
vorticity components. Each of these projected views may correspond to an ensemble
of different orientations in the other two planes of the vorticity filaments that most
contribute to the vorticity component covariances.
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Figure 13. (a) JPDFs and (b) covariance integrands of Ωx and Ωz . Dashed lines ( ) indicate Ωz
at each y+ position. Contour (for y+ = 20, 35 and 89, respectively) increments are (a) 2.6, 3.7, 8.0
and (b) 6.5× 10−6, 3.7× 10−6, 2.3× 10−6. The outer contours are one increment above zero.

4.2. Vorticity–velocity gradient covariances

The processes of vorticity filament stretching and compression, due to their reori-
entation by the velocity gradient field, are mathematically expressed by the first
term (III) on the right-hand side in the vorticity transport equation (1.1). This
term can be studied using the P (Ωj, ∂Ui/∂xj) JPDFs and the covariance integrands,
Ωj(∂Ui/∂xj)P (Ωj, (∂Ui/∂xj)). These same processes result in rates of gains or losses
in the component parts of the enstrophy, as expressed in the first term (III) on the
right-hand side of equation (1.2),

ΩiΩj
∂Ui

∂xj︸ ︷︷ ︸
III

= ΩxΩx
∂U

∂x
+ ΩxΩy

∂U

∂y
+ ΩxΩz

∂U

∂z

+ΩyΩx
∂V

∂x
+ ΩyΩy

∂V

∂y
+ ΩyΩz

∂V

∂z

+ΩzΩx
∂W

∂x
+ ΩzΩy

∂W

∂y
+ ΩzΩz

∂W

∂z
. (4.2)

The sum of each row of terms on the right-hand side of equation (4.3) expresses
the instantaneous time rate of change, due to stretching or compression of vor-
ticity filaments, of the respective parts of the enstrophy: ∂( 1

2
Ω2
x)/∂t, ∂( 1

2
Ω2
y)/∂t,
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∂( 1
2
Ω2
z )/∂t. The covariances ΩiΩj∂Ui/∂xj can be most usefully investigated us-

ing joint probability analysis by grouping the variables as P (Ωi, Ωj∂Ui/∂xj) and
ΩiΩj∂Ui/∂xjP (Ωi, Ωj∂Ui/∂xj). That this is the most rational grouping can be seen by
expressing the left-hand side of equation (4.3) in vector form, i.e. Ω · (Ω · ∇V ).

Before looking at the details of the stretching/compression processes by means of
the JPDFs and covariance integrands shown and discussed below in §§ 4.2.1–4.2.3,
it is worthwhile to look at the net effects of these processes. A measure of the net
rates of change in the magnitudes of the vorticity components due to stretching
and compression is given by the averages of the terms on the right-hand side of

equation (4.3), i.e. the covariances ΩiΩj∂Ui/∂xj . Non-dimensional values of these
nine covariances for all of the measurement positions are shown in figure 16. It is
evident that, on balance, stretching dominates somewhat over compression of vorticity
filaments. The principal covariance producing a large positive rate of change of (±Ωx)2

by stretching in the buffer layer is ΩxΩy∂U/∂y, and for (±Ωz)2 it is ΩzΩz∂W/∂z.
The principal covariance resulting in a large negative rate of change of (±Ωx)2 by

compression in the buffer layer is ΩxΩz∂U/∂z, and for (±Ωz)2 it is ΩzΩy∂W/∂y. The
balance of stretching and compression results in a net rate of change of the (±Ωy)2

part of the enstrophy that is very nearly zero. This is due to a combination of smaller

magnitudes of the covariances and, for the case of ΩyΩy∂V/∂y, approximate balance
between vorticity filament stretching and compression as described in Appendix B.

It should be noted that Brooke & Hanratty (1993) have pointed out that the
gradients product ∂U/∂z · ∂U/∂y appears twice, with opposite signs, in both the
Ωy∂U/∂y and Ωz∂U/∂z stretching/compression terms of the transport equation for
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Figure 17. Set of possible orientations of projections of vorticity filaments on the (x, y)-plane
being strained by ±∂U/∂x and ±∂U/∂y velocity gradients that change ±Ωx.

streamwise vorticity. This has implications for the net balance of stretching and
compression represented by the enstrophy covariance terms plotted in figure 16.
For example, the product Ωx∂U/∂z · ∂U/∂y appears, with opposite sign, respectively
in the terms ΩxΩy∂U/∂y and ΩxΩz∂U/∂z in the first row of equation (4.3). Thus,
these parts of these two terms, with the same magnitudes but opposite signs, cancel
each other on average and contribute nothing to the net rate of change of (±Ωx)2.
Only the respective parts of the terms given by the products Ωx∂W/∂x · ∂U/∂y and
Ωx∂V/∂x · ∂V/∂z contribute to the net imbalance between stretching and compres-
sion which results in the increase of (±Ωx)2. The same thing can be said for the
Ωy∂V/∂z · ∂V/∂x product that appears, with opposite sign, in the terms ΩyΩx∂V/∂x
and ΩyΩz∂V/∂z in the second row and for the Ωz∂W/∂y · ∂W/∂x product that
appears, with opposite sign, in the terms ΩzΩx∂W/∂x and ΩzΩy∂W/∂y in the third
row.

4.2.1. Ω2
x rates of change by vorticity filament stretching/compression

The rate of change of Ωx due to the reorientation by the velocity gradient field of
arbitrarily oriented vorticity filaments is given by the sum of the terms Ωx∂U/∂x +
Ωy∂U/∂y + Ωz∂U/∂z in the x-component of equation (1.1). Likewise, the rate of
change of the Ωx part of the enstrophy, ∂( 1

2
Ω2
x)/∂t, due to this reorientation is given

by the sum of the terms ΩxΩx∂U/∂x+ ΩxΩy∂U/∂y + ΩxΩz∂U/∂z in equations (1.2)
and (4.3). How the ∂U/∂x, ∂U/∂y and ∂U/∂z velocity gradients reorient a vorticity
filament, thereby stretching or compressing it and thus changing the magnitude of
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Figure 18. Set of possible orientations of projections of vorticity filaments on the (x, z)-plane
being strained by ±∂U/∂x and ±∂U/∂z velocity gradients that change ±Ωx.

its Ωx vorticity component, is schematically illustrated in figures 17 and 18. The
projection of an arbitrarily oriented vorticity filament on the (x, y)- and (x, z)-planes
respectively, with each of the possible sign combinations of ±Ωx and ±Ωy or ±Ωz , is
stretched or compressed by the straining action of the velocity gradients shown. In
figure 17, it is apparent that ∂U/∂x or ∂U/∂y strain has the effect, depending on the
sign of the gradient and on the sign of Ωy , of increasing or decreasing ±Ωx. Likewise,
in figure 18 the action of ∂U/∂x or ∂U/∂z increases or decreases ±Ωx depending on
the sign of these gradients and on the sign of Ωz .

Stretching increases of ±Ωx by +∂U/∂x dominate compressive decreases by
−∂U/∂x, especially near the wall. This is seen from the large positive contribution to

the covariance Ωx∂U/∂x from quadrant Q1 (+∂U/∂x,+Ωx) and negative contribu-
tion from Q2 (+∂U/∂x,−Ωx) at y+ = 20 in figure 19(b). The Q1 and Q2 fractional
contributions to the covariance at y+ = 20 are 8.88 and −7.73 compared to the 4.66
and −4.81 fractional contributions from Q3 and Q4. This dominance of stretching
over compression is even more evident and easy to see in figure 20(b) which examines
the ΩxΩx∂U/∂x term in equation (4.3). The rate of increase in (+Ωx)

2 enstrophy at
y+ = 20 by stretching given by the Q1 (+Ωx,+Ωx∂U/∂x) and of (−Ωx)2 by the Q3
(−Ωx,−Ωx∂U/∂x) positive covariance integrand fractional contributions of 0.82 and
0.69 are about three times greater than the rate of compression losses given by the
Q2 and Q4 negative fractional contributions of −0.24 and −0.26. The asymmetries
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in these values are due to measurement inaccuracies. The net ΩxΩx∂U/∂x covariance
values are thus all positive at y+ = 20, 35 and 89. Indeed they are positive at all the
measurement locations as was shown in figure 16(a). Therefore the ∂U/∂x strain acts
to increase (±Ωx)2 by stretching the vorticity filaments more than compressing them.
In figures 20(a), 33(a) and 39(a), the JPDF contours should have a singularity at the
origin for Ωx, Ωy and Ωz identically zero, respectively. This does not appear in these
figures because of the finite bin sizes. However, this deficiency in the plots has no
effect on their interpretation.

Figure 21 shows that almost all the rate of change of ±Ωx by ∂U/∂y strain
(see sketch in figure 17) is due to +∂U/∂y. There only are occasional occurrences of
−∂U/∂y of small magnitude; for these instances the fluid at levels further from the wall
is instantaneously moving slower than that nearer the wall. Figure 17 demonstrates
that, when Ωx and Ωy are of like sign, +∂U/∂y strain stretches the vorticity filament,
thereby increasing ±Ωx. When Ωx and Ωy are of unlike sign, +∂U/∂y compresses the
vorticity filament so that ±Ωx decreases. That the rate of stretching is much greater
than the rate of compression due to ±∂U/∂y strain is clearly seen in figure 22(b)
where the covariance integrand ΩxΩy∂U/∂yP (Ωx, Ωy∂U/∂y) is plotted. With reference
again to figure 17, it is evident that the large positive contributions to the covariance,

ΩxΩy∂U/∂y, from Q1 and Q3 in figure 22 are increases of (±Ωx)2 by stretching,
and the smaller negative contributions from Q2 and Q4 are decreases of (±Ωx)2 by
compression. The net rate of change, ∂( 1

2
Ωx)

2/∂t, due to this term is positive at all
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Figure 24. (a) JPDFs and (b) covariance integrands of Ωx and Ωz∂U/∂z. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 17, 28, 50 and (b) 1.2 × 10−6, 6.5 × 10−7, 4.1 × 10−7. The
outer contours are one increment above zero.

the measurement locations, as seen in figure 16(a), and quite large in the buffer layer.
Indeed, this is the dominant stretching term.

The presence of the negative mean spanwise vorticity dominates the JPDFs in
figure 23. Most of the Ωz values are negative, but are distributed rather symmetrically
about the horizontal (∂U/∂z = 0) axis as is required by the symmetry of the mean
flow. With reference to the sketches in figure 18, it is apparent in figure 24(b) that
the compression of −Ωx by the straining action of ±∂U/∂z (Q2) and of +Ωx by
±∂U/∂z (Q4) is greater than stretching (Q1 and Q3), especially nearer the wall. This

is consistent with the distribution of the covariance ΩxΩz∂U/∂z in figure 16(a), which
is negative across the buffer layer, showing that compression dominates stretching of
±Ωx by ±∂U/∂z strain and that (±Ωx)2 is decreased by this straining action.

Miyake & Tsujimoto (1996) have studied the relative strengths of the three terms
Ωx∂U/∂x, Ωy∂U/∂y and Ωz∂U/∂z in equation (1.1) during the temporal evolution
of a quasi-streamwise vortex detected in their DNS of a turbulent channel flow.
In contrast to our results showing stretching of ±Ωx to be dominated by the term
Ωy∂U/∂y, they find that by far their largest stretching term is Ωx∂U/∂x. However,
our result is an average over our entire data sample, whereas theirs is a cross-stream
area integral over the extent of the region in which |Ωx| is greater than some chosen
threshold. They do find, as do we, that the Ωz∂U/∂z term results in a net compression
of ±Ωx.

Below y+ ≈ 20, Brooke & Hanratty (1993) found that, of the terms describing the
time rate of change of fluctuating streamwise vorticity, the r.m.s. value of the term
ωy∂u/∂y is much greater than the r.m.s. values of ωx∂u/∂x and ωz∂u/∂z. They used
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Figure 25. (a) JPDFs and (b) covariance integrands of Ωx and ∂W/∂x. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 23, 18, 21 and (b) 1.2 × 10−6, 1.2 × 10−6, 8.1 × 10−7. The
outer contours are one increment above zero.

this fact as a criterion to detect newly created streamwise vortices in their turbulent
channel flow DNS.

4.2.2. Ω2
y rates of change by vorticity filament stretching/compression

The summation of terms Ωx∂V/∂x+ Ωy∂V/∂y + Ωz∂V/∂z in the y-component of
equation (1.1) expresses the rates of change of the Ωy component of the vorticity vector
due to stretching or compression by the velocity gradient field. Correspondingly, the
rate of change of the Ωy part of the enstrophy, ∂( 1

2
Ω2
y)/∂t, is expressed by the sum of

the terms ΩyΩx∂V/∂x+ΩyΩy∂V/∂y+ΩyΩz∂V/∂z in equations (1.2) and (4.3). As was
seen in figure 16(b), the net rate of change of 1

2
Ω2
y due to each of these terms is very

nearly zero, and their sum is relatively small. This is due to a combination of smaller

magnitudes of the covariances and, for the case of ΩyΩy∂V/∂y, approximate balance
between vorticity filament stretching and compression. For completeness, these JPDFs
and covariance integrand plots are included in Appendix B.

4.2.3. Ω2
z rates of change by vorticity filament stretching/compression

For the z-component of equation (1.1), the summation of terms Ωx∂W/∂x +
Ωy∂W/∂y + Ωz∂W/∂z expresses the rates of change of the Ωz component of the
vorticity vector due to reorientation by the ∂W/∂x, ∂W/∂y and ∂W/∂z compo-
nents of the velocity gradient field that stretch or compress the arbitrarily ori-
ented vorticity filaments. Correspondingly, the sum of the terms ΩzΩx∂W/∂x +
ΩzΩy∂W/∂y + ΩzΩz∂W/∂z in equations (1.2) and (4.3) expresses the rate of change
of the Ωz part of the enstrophy, ∂( 1

2
Ω2
z )/∂t. In the first two terms of each of these
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Figure 26. (a) JPDFs and (b) covariance integrands of Ωy and ∂W/∂y. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 3.8, 5.9, 11 and (b) 2.4× 10−6, 2.1× 10−6, 9.5× 10−7. The
outer contours are one increment above zero.
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Figure 27. Illustration of a physical intepretation of the velocity gradient–vorticity correlations.

sums of three terms there are strong correlations between Ωx and ∂W/∂x and
between Ωy and ∂W/∂y. This is clearly seen in the orientations of the JPDFs:
P (Ωx, ∂W/∂x) shown in figure 25(a), where Q2 and Q4 are the dominant quadrants,
and P (Ωy, ∂W/∂y) in figure 26(a), where Q1 and Q3 are the dominant quadrants.
These patterns of quadrant domination are also very clearly seen in covariance in-
tegrands, Ωx∂W/∂xP (Ωx, ∂W/∂x) and Ωy∂W/∂yP (Ωy, ∂W/∂y) respectively, shown
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Figure 28. Set of possible orientations of projections of vorticity filaments on the (x, z)-plane
being strained by ±∂W/∂x and ±∂W/∂z velocity gradients that change ±Ωz .
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Figure 29. Set of possible orientations of projections of vorticity filaments on the (x, y)-plane
being strained by ±∂W/∂y and ±∂W/∂z velocity gradients that change ±Ωz .
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Figure 30. (a) JPDFs and (b) covariance integrands of Ωz and Ωx∂W/∂x. Dashed lines ( )

indicate Ωz at each y+ position. Contour increments (for y+ = 20, 35 and 89, respectively) are (a)
90, 121, 270 and (b) 1.4× 10−6, 8.0× 10−7, 4.0× 10−7. The outer contours are one increment above
zero.

in figures 25(b) and 26(b). The strong correlation between Ωx and ∂W/∂x is not
surprising because ∂W/∂x is one of the gradients of Ωy , which is itself rather strongly
correlated with Ωx (see figure 11). Figure 27(b) illustrates how the velocity field of
vorticity filaments inclined downstream with strong Ωx and Ωy components results in
this correlation. These inclined filaments have a velocity field with a strong ∂W/∂x
velocity gradient that correlates with the Ωx vorticity component of the vorticity fila-
ments. Similarly, as illustrated in figure 27(a), because ∂W/∂y is one of the gradients
of Ωx, the velocity field of the same inclined vorticity filaments results in the strong
positive correlation between Ωy and ∂W/∂y.

Figure 28, where the arbitrarily oriented vorticity filaments are projected on the
(x, z)-plane, illustrates the stretching or compression of the filament by the straining
action of the velocity gradients ∂W/∂x and ∂W/∂z. Here ±Ωz is increased or
decreased by the stretching or compression action of the strain. In figure 29 the
projection of the arbitrarily oriented filament on the (y, z)-plane is sketched, and
the stretching or compression by ∂W/∂y and ∂W/∂z is shown. These gradients also
increase or decrease ±Ωz .

That the stretching of ±Ωz by ∂W/∂x is much greater than compression by this
gradient is made clear in figure 30, where the contributions to ∂( 1

2
Ω2
z )/∂t by this strain

field are shown. Because the spanwise instantaneous vorticity, Ωz , is predominantly
negative, the covariance integrands, ΩzΩx∂W/∂xP (Ωz, Ωx∂W/∂x), show, with the help
of reference to the sketches and table in figure 28, that Q3 stretching contributions

to the covariance, ΩzΩx∂W/∂x are by far the largest of the four quadrants. Thus the
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Figure 31. (a) JPDFs and (b) covariance integrands of Ωz and Ωy∂W/∂y. Dashed lines ( )

indicate Ωz at each y+ position. Contour increments (for y+ = 20, 35 and 89, respectively) are (a)
37, 64, 161 and (b) 1.5× 10−6, 8.6× 10−7, 3.0× 10−7. The outer contours are one increment above
zero.

values of ΩzΩx∂W/∂x are positive throughout the wall layer as shown in figure 16(c)
and ∂( 1

2
Ω2
z )/∂t is a positive rate of enstropy increase due to this strain.

Near the wall, compression of ±Ωz by ∂W/∂y is much greater than stretching by
this gradient as was shown in figure 16(c). The quadrant contributions to ∂( 1

2
Ω2
z )/∂t by

this strain are given in figure 31. Here it is seen, with the help of reference to figure 29,
that because the spanwise instantaneous vorticity, Ωz , is predominantly negative, the
covariance integrands, ΩzΩy∂W/∂yP (Ωz, Ωy∂W/∂y), show that Q2 compression and

Q3 stretching contributions to the covariance, ΩzΩx∂W/∂x are the largest of the four
quadrants. The Q2 compression quadrant dominates at y+ = 20, so the rate of change
of enstrophy by this strain is negative.

The sketches in figure 29 and the JPDFs, P (Ωz, ∂W/∂z), and the covariance in-
tegrands, Ωz∂W/∂zP (Ωz, ∂W/∂z), in figure 32 illustrate that stretching of ±Ωz also
results from the +∂W/∂z gradient, while compression is caused by the −∂W/∂z
gradient. The contributions to ∂( 1

2
Ω2
z )/∂t by this strain are dominated by Q2 and

Q3 in the covariance integrand, ΩzΩz∂W/∂zP (Ωz, Ωz∂W/∂z), of figure 33 because
the instantaneous spanwise vorticity, Ωz , is predominantly negative. As is apparent
in figure 33 and in the distribution shown in figure 16(c), stretching (Q3) is signifi-
cantly greater than compression (Q2) resulting in positive values of the covariance,

ΩzΩz∂W/∂z, all across the wall layer and a positive rate of enstrophy increase by
this straining process. Indeed, the stretching of ±Ωz by +∂W/∂z is one of the largest
contributors to the positive rate of change of the total enstrophy.
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Figure 32. (a) JPDFs and (b) covariance integrands of Ωz and ∂W/∂z. Dashed lines ( ) indicate

Ωz at each y+ position. Contour increments (for y+ = 20, 35 and 89, respectively) are (a) 4.0, 8.0,
15 and (b) 5.1× 10−6, 2.5× 10−6, 1.3× 10−6. The outer contours are one increment above zero.

5. Conclusions
The present measurements of a number of statistical properties of the turbulent

boundary layer velocity and vorticity fields compared quite favourably with pub-
lished experimental and DNS results of other investigators. It was observed that
the Reynolds number effects on the statistical properties, noted in the literature, are
difficult to sort out because of the different methods by which the value of the friction
velocity, used to scale the properties, is determined.

Joint probability density function and covariance integrand analysis was performed
with various combinations of vorticity and vorticity–velocity gradient components.
The results of this analysis indicated the following:

(a) A preferred orientation of the vorticity filaments in the wall layer of the
turbulent boundary layer is evident. For example, the positive correlations shown in
the JPDFs of the Ωx and Ωy vorticity components points to the preference for inclined,

like-sign vorticity filaments. The filaments that contribute most to the covariance ΩxΩy
have angles of inclination to the x-coordinate axis that decrease with distance moving
from the buffer to the logarithmic layer, while those that contribute most to the
covariances ΩxΩz and ΩyΩz , have angles of inclination to the z-coordinate axes that
increase with distance from the wall. These patterns of vorticity filament orientation in
the three coordinate planes are qualitatively consistent with observations of Bernard et
al. (1993).

(b) The covariances ΩiΩj∂Ui/∂xj and the corresponding JPDFs, P (Ωi, Ωj∂Ui/∂xj),
and covariance integrands, ΩiΩj∂Ui/∂xj · P (ΩiΩj∂Ui/∂xj) show that, on balance,
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Figure 33. (a) JPDFs and (b) covariance integrands of Ωz and Ωz∂W/∂z. Dashed lines ( )

indicate Ωz at each y+ position. Contour increments (for y+ = 20, 35 and 89, respectively) are (a)
28, 85, 232 and (b) 3.0× 10−6, 9.4× 10−7, 3.4× 10−7. The outer contours are one increment above
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stretching dominates over compression of vorticity filaments yielding a positive rate
of change of (±Ωx)2 and (±Ωz)2. The principal stretching-dominated covariances are

ΩxΩy∂U/∂y and ΩzΩz∂W/∂z, while the principal compression-dominated covariances

are ΩxΩz∂U/∂z and ΩzΩy∂W/∂y. The net rate of change of (±Ωy)2 is small due to
a combination of smaller magnitudes of the covariances and, for the case of the

ΩyΩy∂V/∂y covariance, approximate balance between vorticity filament stretching
and compression.

This work has been supported by National Science Foundation Grant CTS-8911892.
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the Ecole Centrale de Lyon; Jean-Louis Balint was also very helpful in making these
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Appendix A. Data reduction method
The data reduction method of Marasli et al. (1993) begins with Jorgensen’s (1971)

expression for the effective cooling velocity for a hot-wire sensor inclined to the flow
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Figure 34. Set of possible orientations of projections of vorticity filaments on the (x, y)-plane
being strained by ±∂V/∂x and ±∂V/∂y velocity gradients that change ±Ωy .

direction

U2
eff = U2

n + k2U2
t + h2U2

b , (A 1)

where Un, Ut and Ub are the normal, tangential and binormal (normal to the plane
containing the prongs) components of the velocity vector with respect to the sensor.
For a wire inclined to the flow coordinate axes,

Un = n1U + n2V + n3W, (A 2)

Ut = t1U + t2V + t3W, (A 3)

Ub = b1U + b2V + b3W, (A 4)

where, for an ideal probe, the coefficients nl, tl , bl (l = 1–3) can be written in terms
of sines and cosines of the angles of inclination of the wires to the flow coordinate
axes. The sensitivity coefficients k and h, as defined by Jorgensen, must be obtained
empirically. U, V and W are the velocity components in the mean flow, the wall
normal and the spanwise directions, respectively. When equations (A 2)–(A 4) are
substituted into equation (A 1), the coefficients nl, tl , bl are coupled with k and h.
The effective cooling velocity on the jth sensor (j = 1–9) then can be expressed
as

U2
effj

= a1jU
2
j + a2jV

2
j + a3jW

2
j + a4jUjVj + a5jUjWj + a6jVjWj, (A 5)
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Figure 35. Set of possible orientations of projections of vorticity filaments on the (y, z)-plane
being strained by ±∂V/∂z and ±∂V/∂y velocity gradients that change ±Ωy .

where aij (i = 1–6) are coefficients which account for both geometric and thermal
effects and which are determined by calibration, and the velocity components cool-
ing each sensor, Uj , V j and Wj , are assumed to occur at the midpoint of each
sensor.

The effective cooling velocity for a hot-wire sensor is nonlinearly related to the
bridge output voltage Ej . Following Marasli et al. (1993) this relationship is expressed
here by a fourth-order polynomial

U2
effj

= Pj(E) = A1j + A2jEj + A3jE
2
j + A4jE

3
j + A5jE

4
j , (A 6)

where Aij are the polynomial coefficients of the jth sensor (j = 1 − 9). In this
investigation the calibrations of the probe were limited to pure pitch or yaw in a
uniform calibration flow field of specified speed. The VW term in equation (A 5),
which requires mixed pitch and yaw values, was not obtained; therefore the coefficient
a6j was set equal to zero in this equation for the data reduction herein.

Because of the spatial variation of the velocity field, for a multi-sensor probe the
instantaneous velocity components, Uj , Vj and Wj , experienced by each sensor are
different. Assuming that the gradients are constant within the probe volume at a
given instant, the velocity components occurring at the midpoint of each sensor can
be estimated from a Taylor’s series expansion to first order. This expansion about the
probe centroid in the cross-stream plane, perpendicular to the probe axis and passing
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y+ = 20, 35 and 89, respectively) are (a) 38, 24, 27 and (b) 5.4 × 10−7, 7.9 × 10−7, 4.5 × 10−7. The
outer contours are one increment above zero.
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Figure 37. (a) JPDFs and (b) covariance integrands of Ωy and Ωx∂V/∂x. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 70, 108, 290 (b) 7.1× 10−7, 4.9× 10−7, 1.8× 10−7. The outer
contours are one increment above zero.
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Figure 38. (a) JPDFs and (b) covariance integrands of Ωy and ∂V/∂y. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 5.5, 8.8, 16 and (b) 1.7× 10−6, 1.4× 10−6, 8.6× 10−7. The
outer contours are one increment above zero.
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Figure 39. (a) JPDFs and (b) covariance integrands of Ωy and Ωy∂V/∂y. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 74, 103, 255 and (b) 5.4× 10−7, 3.2× 10−7, 1.6× 10−7. The
outer contours are one increment above zero.
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Figure 40. (a) JPDFs and (b) covariance integrands of Ωz and ∂V/∂z. Dashed lines ( ) indicate

Ωz at each y+ position. Contour increments (for y+ = 20, 35 and 89, respectively) are (a) 5.4, 7.8,
15 and (b) 4.6× 10−6, 2.2× 10−6, 1.5× 10−6. The outer contours are one increment above zero.
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Figure 41. (a) JPDFs and (b) covariance integrands of Ωy and Ωz∂V/∂z. Contour increments (for
y+ = 20, 35 and 89, respectively) are (a) 50, 74, 168 and (b) 5.4× 10−7, 3.2× 10−7, 2.0× 10−7. The
outer contours are one increment above zero.
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through the centre of each wire, gives

Uj = Uo + Cj
∂U

∂y
+ Dj

∂U

∂z
, (A 7)

Vj = Vo + Cj
∂V

∂y
+ Dj

∂V

∂z
, (A 8)

Wj = Wo + Cj
∂W

∂y
+ Dj

∂W

∂z
, (A 9)

where the coefficients Cj and Dj (j = 1–9) represent the spanwise and vertical
displacements, which must be accurately measured, of the centres of each of the
sensors from the probe centroid, and the velocity components Uo, Vo and Wo are those
at the probe centroid. Substituting equations (A 7)–(A 9) into equation (A 5), equating
this expression to the fourth-order polynomial of the voltages in equation (A 6)
and rearranging yields 9 nonlinear algebraic equations with 9 unknowns: the three
velocity components, Uo, Vo,Wo and the six velocity gradients in the cross-stream
plane, ∂U/∂y, ∂U/∂z, ∂V/∂y, ∂V/∂z, ∂W/∂y, and ∂W/∂z. These nine equations
(j = 1–9) can be expressed as

fj = −Pj +U2
o + 2CjUo

∂U

∂y
+ 2DjUo

∂U

∂z

−a1j

[
V 2
o + 2CjVo

∂V

∂y
+ 2DjVo

∂V

∂z

]

−a2j

[
W 2

o + 2CjWo

∂W

∂y
+ 2DjWo

∂W

∂z

]

−a3j

[
UoVo + 2Cj

(
Uo

∂V

∂y
+ Vo

∂U

∂y

)
+ 2Dj

(
Uo

∂V

∂z
+ Vo

∂U

∂z

)]

−a4j

[
UoWo + 2Cj

(
Uo

∂W

∂y
+Wo

∂U

∂y

)
+ 2Dj

(
Uo

∂W

∂z
+Wo

∂U

∂z

)]
= 0. (A 10)

Piomelli, Balint & Wallace (1989) have demonstrated the acceptability of using
Taylor’s hypothesis to determine the streamwise gradients in wall-bounded flows in
and above the buffer layer.

The coefficients Aij (for the polynomial, Pj) and aij in equation (A 10) are obtained
from calibration in a uniform steady flow of specified speeds in which the velocity
gradients are negligibly small and the velocity components Uo, Vo and Wo are induced
by pitching and yawing the probe. For this experiment the calibration was carried
out in the nominally irrotational core flow of the wind tunnel. The calibration speed
was varied at 0◦ pitch and yaw over a range from the highest (1.8 m s−1) to the
lowest (0.5 m s−1) to be encountered in the boundary layer, and the pitch/yaw angles
were varied through a range of ±20◦ at fixed speeds of approximately 0.8, 1.0 and
1.2 m s−1. Equations (A 10) were solved at each data sample time step by minimizing
the error function given by F =

∑
f2
j (j = 1–9). Newton’s method was use to solve

this system of nonlinear algebraic equations.
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Appendix B. Ω2
y rates of change by vorticity filament

stretching/compression

The stretching or compression of the vorticity filament by the straining action of the
velocity gradients ∂V/∂x and ∂V/∂y is illustrated in figure 34 where the arbitrarily
oriented filament is projected on the (x, y)-plane. Here, ±Ωy is increased or decreased
by stretching or compression. The projection of the arbitrarily oriented filament on
the (y, z)-plane is sketched in figure 35, where the stretching or compression by ∂V/∂y
and ∂V/∂z is shown. This straining action also increases or decreases ±Ωy .

The P (Ωx, ∂V/∂x) JPDFs in figure 36 are nearly symmetrically distributed about
both axes (Ωx = 0 and ∂V/∂x = 0). There is a clear dominance near the wall
of stretching over compression of ±Ωy by ∂V/∂x as demonstrated by the larger

contributions to the covariance ΩyΩx∂V/∂x of Q1 and Q3 in figure 37. However, the
magnitude of the peaks are very small, and the magnitude of the covariance is very
close to zero all across the wall layer, as seen in figure 16(b). Thus ±∂V/∂x strain
effects contribute very little to the net rate of change of Ω2

y .

This dominance of stretching over compression is not as evident for ±∂V/∂y
strain, as seen in figure 38 and figure 39, where the stretching and compression

quadrants appear to contribute more nearly equally to the covariances Ωy∂V/∂y

and ΩyΩy∂V/∂y, respectively. The fractional Q1 and Q3 (stretching) contributions in
figure 39 at y+ = 35 are +2.18 and +1.94 while those of Q2 and Q4 (compression)

are −1.82 and −1.31. The ΩyΩy∂V/∂y covariance values are nearly zero at all
measurement locations, as shown in figure 16(b). The straining action of ±∂V/∂y (see
figures 34 and 35) thus produces almost no net rate of change of (±Ωy)2.

The prevalence of negative values of Ωz again are seen in figure 40 where the
P (Ωz, ∂V/∂z) JPDFs and Ωz∂V/∂z · P (Ωz, ∂V/∂z) covariance integrands are plotted.
They show some lack of symmetry about the horizontal (∂V/∂z = 0) axis due
to measurement inaccuracies. Referring to the sketches and table in figure 35, the
covariance integrand plots in figure 41 show a dominance of the stretching quadrants
(Q1 and Q3) over the compression quadrants (Q2 and Q4), at y+ = 35 and 89.

However, the magnitude of the net covariance, ΩyΩz∂V/∂z, is very small for all
measurement locations as seen in figure 16(b). Thus the straining action of the
±∂V/∂z velocity gradient on an arbitrarily oriented vorticity filament (see figure 35)
produces almost no net rate of change of (±Ωy)2.
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